Effect of population stratification analysis on false-positive rates for common and rare variants

نویسندگان

  • Hua He
  • Xue Zhang
  • Lili Ding
  • Tesfaye M Baye
  • Brad G Kurowski
  • Lisa J Martin
چکیده

Principal components analysis (PCA) has been successfully used to correct for population stratification in genome-wide association studies of common variants. However, rare variants also have a role in common disease etiology. Whether PCA successfully controls population stratification for rare variants has not been addressed. Thus we evaluate the effect of population stratification analysis on false-positive rates for common and rare variants at the single-nucleotide polymorphism (SNP) and gene level. We use the simulation data from Genetic Analysis Workshop 17 and compare false-positive rates with and without PCA at the SNP and gene level. We found that SNPs' minor allele frequency (MAF) influenced the ability of PCA to effectively control false discovery. Specifically, PCA reduced false-positive rates more effectively in common SNPs (MAF > 0.05) than in rare SNPs (MAF < 0.01). Furthermore, at the gene level, although false-positive rates were reduced, power to detect true associations was also reduced using PCA. Taken together, these results suggest that sequence-level data should be interpreted with caution, because extremely rare SNPs may exhibit sporadic association that is not controlled using PCA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing the impact of population stratification on association studies of rare variation.

AIMS The study of rare variants, which can potentially explain a great proportion of heritability, has emerged as an important topic in human gene mapping of complex diseases. Although several statistical methods have been developed to increase the power to detect disease-related rare variants, none of these methods address an important issue that often arises in genetic studies: false positive...

متن کامل

Evaluating methods for the analysis of rare variants in sequence data

A number of rare variant statistical methods have been proposed for analysis of the impending wave of next-generation sequencing data. To date, there are few direct comparisons of these methods on real sequence data. Furthermore, there is a strong need for practical advice on the proper analytic strategies for rare variant analysis. We compare four recently proposed rare variant methods (combin...

متن کامل

Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests

Although variations in allele frequencies at common SNPs have been extensively studied in different populations, little is known about the stratification of rare variants and its impact on association tests. In this paper, we used Affymetrix 500K genotype data from the WTCCC to investigate if variants in three different frequency categories (below 1%, between 1 and 5%, above 5%) show different ...

متن کامل

Inflated type I error rates when using aggregation methods to analyze rare variants in the 1000 Genomes Project exon sequencing data in unrelated individuals: summary results from Group 7 at Genetic Analysis Workshop 17.

As part of Genetic Analysis Workshop 17 (GAW17), our group considered the application of novel and standard approaches to the analysis of genotype-phenotype association in next-generation sequencing data. Our group identified a major issue in the analysis of the GAW17 next-generation sequencing data: type I error and false-positive report probability rates higher than those expected based on em...

متن کامل

Accounting for Population Stratification in Practice: A Comparison of the Main Strategies Dedicated to Genome-Wide Association Studies

Genome-Wide Association Studies are powerful tools to detect genetic variants associated with diseases. Their results have, however, been questioned, in part because of the bias induced by population stratification. This is a consequence of systematic differences in allele frequencies due to the difference in sample ancestries that can lead to both false positive or false negative findings. Man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2011